Chain length-dependent effects of inulin-type fructan dietary fiber on human systemic immune responses against hepatitis-B.

Immunoendocrinology, Division of Medical Biology, Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands. Department of Obstetrics and Gynaecology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.

Molecular nutrition & food research. 2017;(10)

Abstract

SCOPE In vivo studies demonstrating that only specific dietary-fibers contribute to immunity are still inconclusive, as measuring immune effects in healthy humans remains difficult. We applied a relatively inefficacious vaccination-challenge to study chain length-dependent effects of inulin-type fructan (ITF) dietary fibers on human immunity. METHODS AND RESULTS ITFs with two different 'degree of polymerization-' (DP)-profiles were tested in vitro for effects on PBMC-cytokines and TLR2 activation. In a double-blind placebo-controlled trial, 40 healthy volunteers (18-29 years) were divided into three groups and supplemented from day 1 to day 14 with DP10-60 ITF, DP2-25 ITF (both n = 13), or fructose placebo (n = 14), 8 g/day. On day 7, all volunteers were vaccinated against hepatitis B. Anti-HbsAg-titer development and lymphocyte subsets were studied. In vitro, DP10-60 ITFs stimulated a Th1-like cytokine profile and stimulated TLR2 more strongly than DP2-25 ITFs. In vivo, DP10-60 increased anti-HBsAg titers, Th1-cells, and transitional B-cells. Both ITFs increased CD45ROhi CTLs at day 35, and CD161+ cytokine producing NK-cells at day 21 and 35. CONCLUSION Support of immunity is determined by the chain length of ITFs. Only long-chain ITFs support immunity against pathogenic hepB-epitopes introduced by vaccination. Our findings demonstrate that specific dietary fibers need to be selected for immunity support.

Methodological quality

Publication Type : Randomized Controlled Trial

Metadata